98 research outputs found

    Magneto-elastic interaction in cubic helimagnets with B20 structure

    Full text link
    The magneto-elastic interaction in cubic helimagnets with B20 symmetry is considered. It is shown that this interaction is responsible for negative contribution to the square of the spin-wave gap Δ\Delta which is alone has to disrupt assumed helical structure. It is suggested that competition between positive part of ΔI2\Delta^2_I which stems from magnon-magnon interaction and its negative magneto-elastic part leads to the quantum phase transition observed at high pressure in MnSiMn Si and FeGeFe Ge. This transition has to occur when Δ2=0\Delta^2=0. For MnSiMn Si from rough estimations at ambient pressure both parts ΔI\Delta_I and ∣ΔME∣|\Delta_{ME}| are comparable with the experimentally observed gap. The magneto-elastic interaction is responsible also for 2\m k modulation of the lattice where \m k is the helix wave-vector and contribution to the magnetic anisotropy. Experimental observation by xx-ray and neutron scattering the lattice modulation allows determine the strength of anisotropic part of the magneto-elastic interaction responsible for above phenomena and the lattice helicity

    Tricritical behavior of the frustrated XY antiferromagnet

    Full text link
    Extensive histogram Monte-Carlo simulations of the XY antiferromagnet on a stacked triangular lattice reveal exponent estimates which strongly favor a scenario of mean-field tricritical behavior for the spin-order transition. The corresponding chiral-order transition occurs at the same temperature but appears to be decoupled from the spin-order. These results are relevant to a wide class of frustrated systems with planar-type order and serve to resolve a long-standing controversy regarding their criticality.Comment: J1K 2R1 4 pages (RevTex 3.0), 4 figures available upon request, Report# CRPS-94-0

    Quasi two-dimensional antiferromagnet on a triangular lattice RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a rare example of a nearly two-dimensional Heisenberg antiferromagnet on a triangular lattice. Magnetic resonance spectra and magnetization curves reveal that the system has a layered spin structure with six magnetic sublattices. The sublattices within a layer are arranged in a triangular manner with the magnetization vectors 120 degree apart. The H-T phase diagram, containing at least five different magnetic phases is constructed. In zero field, RbFe(MoO4)2 undergoes a phase transition at T_N=3.8 K into a non-collinear triangular spin structure with all the spins confined in the basal plane. The application of an in-plane magnetic field induces a collinear spin state between the fields H_c1=47 kOe and H_c2=71 kOe and produces a magnetization plateau at one-third of the saturation moment. Both the ESR and the magnetization measurements also clearly indicate an additional first-order phase transition in a field of 35 kOe. The exact nature of this phase transition is uncertain.Comment: 9 pages incl 11 figure

    Neural Modeling and Control of Diesel Engine with Pollution Constraints

    Full text link
    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identification and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are flexible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The presented work extends optimal neuro-control to the multivariable case and shows the flexibility of neural optimisers. Considering the preliminary results, it appears that neural networks can be used as embedded models for engine control, to satisfy the more and more restricting pollutant emission legislation. Particularly, they are able to model nonlinear dynamics and outperform during transients the control schemes based on static mappings.Comment: 15 page

    Thermal phase diagrams of columnar liquid crystals

    Full text link
    In order to understand the possible sequence of transitions from the disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene (HHTT), we study a three-dimensional planar model with octupolar interactions inscribed on a triangular lattice of columns. We obtain thermal phase diagrams using a mean-field approximation and Monte Carlo simulations. These two approaches give similar results, namely, in the quasi one-dimensional regime, as the temperature is lowered, the columns order with a linear polarization, whereas helical phases develop at lower temperatures. The helicity patterns of the helical phases are determined by the exact nature of the frustration in the system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe

    Fluctuation-induced phase in CsCuCl3 in transverse magnetic field: Theory

    Full text link
    CsCuCl3 is a quantum triangular antiferromagnet, ferromagnetically stacked, with an incommensurate (IC) structure due to a Dzyaloshinskii-Moriya interaction. Because of the classical degeneracy caused by the frustration, fluctuations in CsCuCl3 have extraordinarily large effects, such as the phase transition in longitudinal magnetic field (normal to the planes, parallel to the IC wavenumber q) and the plateau in q in transverse field (perpendicular to q). We argue that fluctuations are responsible also for the new IC phase discovered in transverse field near the Neel temperature T_N, by T. Werner et al. [Solid State Commun. 102, p.609 (1997)]. We develop and analyse the corresponding minimal Landau theory; the effects of fluctuations on the frustration are included phenomenologically, by means of a biquadratic term. The Landau theory gives two IC phases, one familiar from previous studies; properties of the new IC phase, which occupies a pocket of the temperature-field phase diagram near T_N, agree qualitatively with those of the new phase found experimentally.Comment: 12 pages, revtex, 4 postscript figures, submitted to J. Phys: Condens. Matte

    Antiferromagnetic 4-d O(4) Model

    Get PDF
    We study the phase diagram of the four dimensional O(4) model with first (beta1) and second (beta2) neighbor couplings, specially in the beta2 < 0 region, where we find a line of transitions which seems to be second order. We also compute the critical exponents on this line at the point beta1 =0 (F4 lattice) by Finite Size Scaling techniques up to a lattice size of 24, being these exponents different from the Mean Field ones.Comment: 26 pages LaTeX2e, 7 figures. The possibility of logarithmic corrections has been considered, new figures and tables added. Accepted for publication in Physical Review

    Ehrenfest relations and magnetoelastic effects in field-induced ordered phases

    Full text link
    Magnetoelastic properties in field-induced magnetic ordered phases are studied theoretically based on a Ginzburg-Landau theory. A critical field for the field-induced ordered phase is obtained as a function of temperature and pressure, which determine the phase diagram. It is found that magnetic field dependence of elastic constant decreases discontinuously at the critical field, Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We found an Ehrenfest relation between the field dependence of the elastic constant and the pressure dependence of critical field. Our theory provides the theoretical form for magnetoelastic properties in field- and pressure-induced ordered phases.Comment: 7 pages, 3 figure

    The critical behavior of frustrated spin models with noncollinear order

    Full text link
    We study the critical behavior of frustrated spin models with noncollinear order, including stacked triangular antiferromagnets and helimagnets. For this purpose we compute the field-theoretic expansions at fixed dimension to six loops and determine their large-order behavior. For the physically relevant cases of two and three components, we show the existence of a new stable fixed point that corresponds to the conjectured chiral universality class. This contradicts previous three-loop field-theoretical results but is in agreement with experiments.Comment: 4 pages, RevTe
    • …
    corecore